7.2 Bohr's Theory of the Atom

When an atom of a particular element absorbs
, they can re-emit the energy as (that's how Neon lights work). Each element has a very specific pattern of wavelengths (colours) of light. This pattern
is called the
This gave Bohr some insight into the structure of the atom.
He determined that atoms must have a certain that they occupied. The electrons did not emit energy while in
any particular shell, just when the electrons
These orbitals are similar to the way planets orbit the sun.
Here are Bohr's revisions: -Electrons are located in which are
located certain from the nucleus
cannot exist between the defined shells
-Electrons can energy to move up to a higher shell, or they can energy to move down to a lower shell
-Electrons are (have less energy) when they are closer to the nucleus.
The number of an element has depends on which period it belongs to.
The number of = it's period.
How many shells in Helium? Tungsten? Argon?

Matter Remember that atoms are made of and . The number an atom has is based on the number of protons it has. This is called the _____ Ex: all chlorine atoms or ions in the universe have ____ protons. Protons cannot normally move about. It is the number of _____ that are easily changed. Remember, protons are _____ and electrons are _____. An atom with a specific charge is called an____. You can have a positive or negative _____. _____= negative ion _____= positive ion The charge of an ion is called _____. Another way that atoms (ex: chlorine) of the same element can be different is the number of_____. Remember, do not change the charge of an atom, but they do affect their overall mass The _____ of an atom is the total combined number of protons and neutrons. How many neutrons would a chlorine atom with a mass number of 35 have?

We can now make a complete "modern" version of the Atomic Theory of